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Abstract

We prove that, if A is a prime non-commutative JB∗-algebra, and if A is
neither quadratic nor commutative, then there exist a prime C∗-algebra B and
a real number λ with 1

2 < λ ≤ 1 such that A = B as involutive Banach spaces,
and the product of A is related to that of B (denoted by ◦, say) by means of
the equality xy = λx ◦ y + (1− λ)y ◦ x.

0.- Introduction

Non-commutative JB∗-algebras are the non-associative counterparts of C∗-
algebras. They arise in Functional Analysis by the hand of the general non-
associative extension of the Vidav-Palmer theorem. Indeed, norm-unital com-
plete normed non-associative complex algebras subjected to the geometric Vi-
dav condition characterizing C∗-algebras in the associative setting [2; Theo-
rem 38.14] are nothing but unital non-commutative JB∗-algebras [10; Theorem
12]. The classical structure theory for non-commutative JB∗-algebras consists
of a precise classification of certain prime non-commutative JB∗-algebras (the
so-called “ non-commutative JBW ∗-factors ”) and the fact that every non-
commutative JB∗-algebra has a faithful family of factor representations (see
[1], [3], [8], and [9]).

In this paper we obtain a classification of all prime non-commutative JB∗-
algebras, which extends that of non-commutative JBW ∗-factors. Precisely, we
prove that, if A is a prime non-commutative JB∗-algebra, and if A is neither
quadratic nor commutative, then there exist a prime C∗-algebra B and a real
number λ with 1

2 < λ ≤ 1 such that A = B as involutive Banach spaces, and the
product of A is related to that of B (denoted by ◦, say) by means of the equality
xy = λx ◦ y + (1− λ)y ◦ x. We note that prime non-commutative JB∗-algebras
which are either quadratic or commutative are well-understood (see [9, Section
3] and the Zel’manov-type prime theorem for JB∗-algebras [5; Theorem 2.3],
respectively). We also note that our result becomes a natural analytical variant
of the classification theorem for prime nondegenerate non-commutative Jordan
algebras, proved by W. G. Skosyrskii [12].
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1.- The results

Following [11; p. 141], we define non-commutative Jordan algebras as those
algebras A satisfying the Jordan identity (xy)x2 = x(yx2) and the flexibility
condition (xy)x = x(yx). For an element x in a non-commutative Jordan algebra
A, we denote by Ux the mapping y → x(xy + yx)−x2y from A to A. By a non-
commutative JB∗-algebra we mean a complete normed non-commutative Jordan
complex algebra (say A) with conjugate-linear algebra involution ∗ satisfying
‖ Ux(x∗) ‖=‖ x ‖3 for every x in A. When a non-commutative JB∗-algebra
A is actually commutative, we simply say that A is a JB∗-algebra. We note
that C∗-algebras are precisely those non-commutative JB∗-algebras which are
associative. Since non-commutative Jordan algebras are power-associative (i.e.,
all their one-generated subalgebras are associative) [11; p. 141], it follows that
the closed subalgebra of a non-commutative JB∗-algebra generated by any of
its self-adjoint elements is a commutative C∗-algebra.

Clearly, the `∞-sum of every family of non-commutative JB∗-algebras is
a non-commutative JB∗-algebra in a natural manner. Then, the fact that
∗-homomorphisms between non-commutative JB∗-algebras are contractive (in
fact isometric whenever they are injective) [8; Proposition 2.1] leads to the fol-
lowing folklore result.

LEMMA 1- Let A be a non-commutative JB∗-algebra, I a non-empty set,
and, for each i in I, let ϕi be a ∗-homomorphism from A into a non-commutative
JB∗-algebra Ai. If ∩i∈IKer(ϕi) = 0, then we have

‖ x ‖= sup{‖ ϕi(x) ‖ : i ∈ I}

for every x in A.

To continue our argument, we need to invoke some techniques of Banach
ultraproducts [7]. Let I be a non-empty set, U an ultrafilter on I, and {Xi}i∈I

a family of Banach spaces. We may consider the Banach space (⊕i∈IXi)∞,
`∞-sum of this family, and the closed subspace NU of (⊕i∈IXi)∞ given by

NU := {{xi} ∈ (⊕i∈IXi)∞ : lim
U

‖ xi ‖= 0}.

The (Banach) ultraproduct (Xi)U of the family {Xi}i∈I relative to the ultrafilter
U is defined as the quotient Banach space (⊕i∈IXi)∞/NU . If we denote by (xi)
the element in (Xi)U containing a given family {xi} ∈ (⊕i∈IXi)∞, then it is
easy to verify that ‖ (xi) ‖= limU ‖ xi ‖. We note that, if, for every i in I,
Xi is a non-commutative JB∗-algebra, then NU is a closed (two-sided) ideal of
the non-commutative JB∗-algebra (⊕i∈IXi)∞, and therefore, by [8; Corollary
1.11], (Xi)U is a non-commutative JB∗-algebra in a natural way.

Let A be an algebra. A is said to be prime if A 6= 0 and, whenever P,Q
are ideals of A with PQ = 0, we have either P = 0 or Q = 0. If A is prime,
and if P,Q are ideals of A satisfying P ∩ Q = 0, then, clearly, either P = 0
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or Q = 0. Assume that A is prime, and let {Pi}i∈I be a family of ideals of
A such that ∩i∈IPi = 0. For x in A\{0}, put Ix := {i ∈ I : x 6∈ Pi}. Then
B := {Ix : x ∈ A\{0}} is a filter basis on I. Indeed, it follows from the
assumption ∩i∈IPi = 0 that Ix is non-empty for every x in A\{0}, whereas, for
x, y in A\{0}, we have 0 6= x ∈ ∩i∈I\Ix

Pi and 0 6= y ∈ ∩i∈I\Iy
Pi, hence, by the

primeness of A, there exists 0 6= z ∈ ∩i∈I\(Ix∩Iy)Pi, so that Iz ⊆ Ix ∩ Iy.

PROPOSITION 2.- Let A be a prime non-commutative JB∗-algebra, I a
non-empty set, and, for each i in I, let ϕi be a ∗-homomorphism from A into a
non-commutative JB∗-algebra Ai. Assume that ∩i∈IKer(ϕi) = 0. Then there
exists an ultrafilter U on I such that the ∗-homomorphism ϕ : x → (ϕi(x)) from
A to (Ai)U is injective.

Proof.- For i in I, put Pi := Ker(ϕi), and let B be the filter basis on I
associated to the family {Pi}i∈I as in the previous comment. Take an ultrafilter
U on I containing B. Suppose that the mapping ϕ : x → (ϕi(x)) from A
to (Ai)U is not injective. Then there exists x in A satisfying ‖ x ‖= 1 and
limU ϕi(x) = 0. Therefore J := {i ∈ I : ‖ ϕi(x) ‖< 1

2} is an element of U .
But, from the fact that ‖ x ‖= 1, the definition of J , and Lemma 1, we obtain
∩i∈JPi 6= 0. Then, taking a non-zero element y in ∩i∈JPi, we have J ∩ Iy = ∅.
Since J and Iy are elements of U , this is a contradiction. �

Let F be a field containing more than two elements. Following [11, pp.
49-50], an algebra A over F is called quadratic (over F) if it has a unit 1,
A 6= F1, and, for each x in A, there are elements t(x) and n(x) in F such that
x2 − t(x)x + n(x)1 = 0. If A is a quadratic algebra over F, then, for x in
A \ F1, the scalars t(x) and n(x) are uniquely determined, so that, choosing
t(α1) := 2α and n(α1) := α2 (α ∈ F), we obtain mappings t and n (called the
trace form and the algebraic norm, respectively) from A to F, which are linear
and quadratic, respectively (see again [11; pp. 49-50]).

LEMMA 3.- Let A be a quadratic non-commutative JB∗-algebra. Then we
have | t(x) |≤ 2 ‖ x ‖ and | n(x) |≤‖ x ‖2 for all x in A. Moreover, if B is a
∗-invariant subalgebra of A with dim(B) ≥ 2, then the unit of A lies in B, and
therefore B is a quadratic algebra.

Proof.- For x in A, the spectrum of x relative to the (associative and finite-
dimensional) subalgebra of A generated by x consists of the roots (say λ1, λ2) of
the complex polynomial λ2 − t(x)λ + n(x), so t(x) = λ1 + λ2 and n(x) = λ1λ2,
and so | t(x) |≤ 2 ‖ x ‖ and | n(x) |≤‖ x ‖2. Let B be a non-zero *-invariant
subalgebra of A with 1 6∈ B. Put Asa := {x ∈ A : x∗ = x} and Bsa := B ∩Asa.
Then Asa, endowed with the product (x, y) → 1

2 (xy + yx), becomes a quadratic
algebra over R. Since 1 6∈ B, for x in Bsa we must have n(x) = 0, so x2 = t(x)x,
and so

‖ x ‖2=‖ x2 ‖=| t(x) |‖ x ‖ .
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Now the restriction of t to Bsa is a linear functional on B with zero kernel, and
hence the real vector space Bsa is one-dimensional. Since B is *-invariant, we
deduce that B is one-dimensional (over C). �

To conclude the proof of our main result, we need some background on factor
representations of non-commutative JB∗-algebras. First of all, we note that, if
A is a non-commutative JB∗-algebra, and if λ is a real number with 0 ≤ λ ≤ 1,
then the involutive Banach space of A, endowed with the product

(x, y) → λxy + (1− λ)yx ,

becomes a non-commutative JB∗-algebra (which will be denoted by A(λ)). By
a non-commutative JBW ∗-algebra we mean a non-commutative JB∗-algebra
which is a dual Banach space. Prime non-commutative JBW ∗-algebras are
called non-commutative JBW ∗-factors. A non-commutative JBW ∗-factor is
said to be of Type I if the closed unit ball of its predual has extreme points
(compare [9; Theorem 1.11]). If A is a non-commutative JBW ∗-factor of Type
I, and if A is neither quadratic nor commutative, then there exist a complex
Hilbert space H and a real number λ with 1

2 < λ ≤ 1 such that, denoting by
B the C∗-algebra of all bounded linear operators on H, we have A = B(λ) [9;
Theorem 2.7]. A factor representation of a non-commutative JB∗-algebra A is
a w∗-dense range ∗-homomorphism from A into some non-commutative JBW ∗-
factor. Finally, let us recall that every nonzero non-commutative JB∗-algebra
has a faithful family of Type I factor representations [9; Corollary 1.13].

THEOREM 4.- Let A be a prime non-commutative JB∗-algebra. Then one
of the following assertions hold for A:

1. A is commutative.

2. A is quadratic.

3. There exist a prime C∗-algebra B and a real number λ with 1
2 < λ ≤ 1

such that A = B(λ).

Proof.- Take a faithful family of Type I factor representations of A (say
{ϕi : A → Ai}i∈I). Define

I1 := {i ∈ I : Ai is commutative} ,

I2 := {i ∈ I : Ai is quadratic} ,

I3 := {i ∈ I : Ai = B
(λi)
i for some C∗ − algebra Bi and some

1
2

< λi ≤ 1} ,

and, for n = 1, 2, 3, write Qn := ∩i∈In
Ker(ϕi). Since ∩3

n=1Qn = ∩i∈IKer(ϕi) =
0, the primeness of A gives the existence of m = 1, 2, 3 such that Qm = 0.
Therefore, replacing Im with I, there is no loss of generality in supposing that
one of the conditions which follow is fulfilled:
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1. Ai is commutative for all i in I.

2. Ai is quadratic for all i in I.

3. For each i in I, there exist a C∗-algebra Bi and some 1
2 < λi ≤ 1 such

that Ai = B
(λi)
i .

Assume that Condition 1 is satisfied. Then, clearly, A is commutative.
Now, assume that Condition 2 is fulfilled. Then, by Proposition 2, there

exists an ultrafilter U on I such that the ∗-homomorphism ϕ : x → (ϕi(x)) from
A to (Ai)U is injective. Note that, since, for i in I, Ai has a unit 1i, (Ai)U has
also a unit 1 = (1i). Note also that, since quadratic algebras have dimension
≥ 2, and A has a quadratic factor representation, we have dim(A) ≥ 2, so
dim(ϕ(A)) ≥ 2 (because ϕ is injective), and so (Ai)U 6= C1. For i in I, let ti
and ni be the trace form and the algebraic norm, respectively, on the quadratic
non-commutative JB∗-algebra Ai. By the first assertion in Lemma 3, for (xi)
in (Ai)U , {ti(xi)}i∈I and {ni(xi)}i∈I are bounded families of complex numbers,
and therefore t : (xi) → limU ti(xi) and n : (xi) → limU ti(xi) become well-
defined mappings from (Ai)U into C satisfying

(xi)2 − t((xi))(xi) + n((xi))1 = 0

for all (xi) in (Ai)U . Now, (Ai)U is a quadratic algebra. Since ϕ(A) is a ∗-
invariant subalgebra of (Ai)U with dimension ≥ 2, it follows from the second
assertion in Lemma 3 that ϕ(A) (and hence A) is quadratic.

Finally assume that Condition 3 is satisfied. As in the previous case, we
are provided with an ultrafilter U on I such that the ∗-homomorphism ϕ : x →
(ϕi(x)) from A to (Ai)U is injective. Put λ := limU λi. Then we easily obtain

(Ai)U = (B(λi)
i )U = (B(λ)

i )U = ((Bi)U )(λ) .

If λ = 1
2 , then (Ai)U (and hence A) is commutative. Otherwise, we are in the

situation which follows: 1
2 < λ ≤ 1, D := (Bi)U is a C∗-algebra, and, through

the (automatically isometric) injective ∗-homomorphism ϕ, A can be seen as a
closed ∗-invariant subalgebra of D(λ). Then, since the product x ◦ y of D can
be determined from the one xy of D(λ) by means of the equality

x ◦ y =
1

2λ− 1
(λxy + (λ− 1)yx) ,

there exists a closed ∗-invariant subalgebra of D (say B) satisfying A = B(λ).
Now the proof is concluded by showing that the C∗-algebra B is prime. Let P
and Q be ideals of B with P ◦Q = 0. Then, clearly, P and Q are ideals of A. On
the other hand, since C∗-algebras are semiprime, P ◦Q = 0 implies Q ◦ P = 0,
and therefore PQ ⊆ P ◦Q + Q ◦ P = 0. By the primeness of A, we have either
P = 0 or Q = 0. �
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Quadratic prime non-commutative JB∗-algebras have been precisely de-
scribed in [9, Section 3]. According to that description, they are in fact Type
I non-commutative JBW ∗-factors. For commutative prime JB∗-algebras, the
reader is referred to [5; Theorem 2.3].

Recall that a W ∗-algebra is a C∗-algebra which is a dual Banach space, and
that a W ∗-factor is a prime W ∗-algebra. The next result follows directly from
Theorem 4.

COROLLARY 5 ([1], [3]).- Non-commutative JBW ∗-factors are either com-
mutative, quadratic, or of the form B(λ) for some W ∗-factor B and some real
number λ with 1

2 < λ ≤ 1.

For (commutative) JBW ∗-factors, the reader is referred to [5; Proposition
1.1].

As we have pointed out earlier, for non-commutative JBW ∗-factors of Type
I, the W ∗-factor B arising in the above Corollary is equal to the algebra BL(H)
of all bounded linear operators on some complex Hilbert space H. This result
follows from Corollary 5 and the fact that the algebras of the form BL(H), with
H a complex Hilbert space, are the unique W ∗-factors of Type I [6; Proposition
7.5.2]. Concerning (commutative) JBW ∗-factors of Type I, we can invoke the
categorical correspondence between JBW -algebras and JBW ∗-algebras [4], to
reformulate the classification of JBW -factors of Type I [6; Corollary 5.3.7, and
Theorems 5.3.8, 6.1.8, and 7.5.11] in the terms given by the next proposition.
We recall that a conjugation (respectively, anticonjugation) σ on a complex
Hilbert space H is a conjugate-linear isometry from H to H satisfying σ2 = 1
(respectively, σ2 = −1).

PROPOSITION 6.- The JBW ∗-factors of Type I are the following:

1. The exceptional JB∗-algebra H3(OC).

2. The prime quadratic JB∗-algebras.

3. The JB∗-algebras of the form B(1/2), where B = BL(H) for some complex
Hilbert space H.

4. The JB∗-algebras of the form {x ∈ BL(H) : σ−1x∗σ = x}, where H is a
complex Hilbert space, and σ is either a conjugation or an anticonjugation
on H.

A normed algebra A is called topologically simple if A2 6= 0 and the unique
closed ideals of A are {0} and A.

COROLLARY 7.- Topologically simple non-commutative JB∗-algebras are
either commutative, quadratic, or of the form B(λ) for some topologically simple
C∗-algebra B and some real number λ with 1

2 < λ ≤ 1.
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Proof.- Since topologically simple normed algebras are prime, Theorem 4
applies. But, if A is a non-commutative JB∗-algebra of the form B(λ), for some
C∗-algebra B and some 1

2 < λ ≤ 1, then every ideal of B is an ideal of A, and
hence B is topologically simple whenever A is so. �

We note that every quadratic prime JB∗-algebra is algebraically (hence
topologically) simple. For topologically simple (commutative) JB∗-algebras,
the reader is referred to [5; Corollary 3.1].
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