PRIME NON-COMMUTATIVE $J B^{*}$-ALGEBRAS

KAIDI EL AMIN, ANTONIO MORALES CAMPOY
Departamento de Algebra y Análisis Matemático
Universidad de Almería, Facultad de Ciencias Experimentales 04120-Almería, Spain
and

ANGEL RODRIGUEZ PALACIOS
Departamento de Análisis Matemático
Universidad de Granada, Facultad de Ciencias
18071-Granada, Spain

Abstract

We prove that, if A is a prime non-commutative $J B^{*}$-algebra, and if A is neither quadratic nor commutative, then there exist a prime C^{*}-algebra B and a real number λ with $\frac{1}{2}<\lambda \leq 1$ such that $A=B$ as involutive Banach spaces, and the product of A is related to that of B (denoted by \circ, say) by means of the equality $x y=\lambda x \circ y+(1-\lambda) y \circ x$.

0.- Introduction

Non-commutative $J B^{*}$-algebras are the non-associative counterparts of C^{*} algebras. They arise in Functional Analysis by the hand of the general nonassociative extension of the Vidav-Palmer theorem. Indeed, norm-unital complete normed non-associative complex algebras subjected to the geometric Vidav condition characterizing C^{*}-algebras in the associative setting [2; Theorem 38.14] are nothing but unital non-commutative $J B^{*}$-algebras [10; Theorem 12]. The classical structure theory for non-commutative $J B^{*}$-algebras consists of a precise classification of certain prime non-commutative $J B^{*}$-algebras (the so-called " non-commutative $J B W^{*}$-factors ") and the fact that every noncommutative $J B^{*}$-algebra has a faithful family of factor representations (see [1], [3], [8], and [9]).

In this paper we obtain a classification of all prime non-commutative $J B^{*}$ algebras, which extends that of non-commutative $J B W^{*}$-factors. Precisely, we prove that, if A is a prime non-commutative $J B^{*}$-algebra, and if A is neither quadratic nor commutative, then there exist a prime C^{*}-algebra B and a real number λ with $\frac{1}{2}<\lambda \leq 1$ such that $A=B$ as involutive Banach spaces, and the product of A is related to that of B (denoted by \circ, say) by means of the equality $x y=\lambda x \circ y+(1-\lambda) y \circ x$. We note that prime non-commutative $J B^{*}$-algebras which are either quadratic or commutative are well-understood (see [9, Section 3] and the Zel'manov-type prime theorem for $J B^{*}$-algebras [5; Theorem 2.3], respectively). We also note that our result becomes a natural analytical variant of the classification theorem for prime nondegenerate non-commutative Jordan algebras, proved by W. G. Skosyrskii [12].

1.- The results

Following [11; p. 141], we define non-commutative Jordan algebras as those algebras A satisfying the Jordan identity $(x y) x^{2}=x\left(y x^{2}\right)$ and the flexibility condition $(x y) x=x(y x)$. For an element x in a non-commutative Jordan algebra A, we denote by U_{x} the mapping $y \rightarrow x(x y+y x)-x^{2} y$ from A to A. By a noncommutative $J B^{*}$-algebra we mean a complete normed non-commutative Jordan complex algebra (say A) with conjugate-linear algebra involution $*$ satisfying $\left\|U_{x}\left(x^{*}\right)\right\|=\|x\|^{3}$ for every x in A. When a non-commutative $J B^{*}$-algebra A is actually commutative, we simply say that A is a $J B^{*}$-algebra. We note that C^{*}-algebras are precisely those non-commutative $J B^{*}$-algebras which are associative. Since non-commutative Jordan algebras are power-associative (i.e., all their one-generated subalgebras are associative) [11; p. 141], it follows that the closed subalgebra of a non-commutative $J B^{*}$-algebra generated by any of its self-adjoint elements is a commutative C^{*}-algebra.

Clearly, the ℓ_{∞}-sum of every family of non-commutative $J B^{*}$-algebras is a non-commutative $J B^{*}$-algebra in a natural manner. Then, the fact that *-homomorphisms between non-commutative $J B^{*}$-algebras are contractive (in fact isometric whenever they are injective) [8; Proposition 2.1] leads to the following folklore result.

LEMMA 1- Let A be a non-commutative $J B^{*}$-algebra, I a non-empty set, and, for each i in I, let φ_{i} be a*-homomorphism from A into a non-commutative $J B^{*}$-algebra A_{i}. If $\cap_{i \in I} \operatorname{Ker}\left(\varphi_{i}\right)=0$, then we have

$$
\|x\|=\sup \left\{\left\|\varphi_{i}(x)\right\| \quad: i \in I\right\}
$$

for every x in A.
To continue our argument, we need to invoke some techniques of Banach ultraproducts [7]. Let I be a non-empty set, \mathcal{U} an ultrafilter on I, and $\left\{X_{i}\right\}_{i \in I}$ a family of Banach spaces. We may consider the Banach space $\left(\oplus_{i \in I} X_{i}\right)_{\infty}$, ℓ_{∞}-sum of this family, and the closed subspace $N_{\mathcal{U}}$ of $\left(\oplus_{i \in I} X_{i}\right)_{\infty}$ given by

$$
N_{\mathcal{U}}:=\left\{\left\{x_{i}\right\} \in\left(\oplus_{i \in I} X_{i}\right)_{\infty}: \lim _{\mathcal{U}}\left\|x_{i}\right\|=0\right\} .
$$

The (Banach) ultraproduct $\left(X_{i}\right)_{\mathcal{U}}$ of the family $\left\{X_{i}\right\}_{i \in I}$ relative to the ultrafilter \mathcal{U} is defined as the quotient Banach space $\left(\oplus_{i \in I} X_{i}\right)_{\infty} / N_{\mathcal{U}}$. If we denote by $\left(x_{i}\right)$ the element in $\left(X_{i}\right)_{\mathcal{U}}$ containing a given family $\left\{x_{i}\right\} \in\left(\oplus_{i \in I} X_{i}\right)_{\infty}$, then it is easy to verify that $\left\|\left(x_{i}\right)\right\|=\lim _{\mathcal{U}}\left\|x_{i}\right\|$. We note that, if, for every i in I, X_{i} is a non-commutative $J B^{*}$-algebra, then $N_{\mathcal{U}}$ is a closed (two-sided) ideal of the non-commutative $J B^{*}$-algebra $\left(\oplus_{i \in I} X_{i}\right)_{\infty}$, and therefore, by [8; Corollary 1.11], $\left(X_{i}\right)_{\mathcal{U}}$ is a non-commutative $J B^{*}$-algebra in a natural way.

Let A be an algebra. A is said to be prime if $A \neq 0$ and, whenever P, Q are ideals of A with $P Q=0$, we have either $P=0$ or $Q=0$. If A is prime, and if P, Q are ideals of A satisfying $P \cap Q=0$, then, clearly, either $P=0$
or $Q=0$. Assume that A is prime, and let $\left\{P_{i}\right\}_{i \in I}$ be a family of ideals of A such that $\cap_{i \in I} P_{i}=0$. For x in $A \backslash\{0\}$, put $I_{x}:=\left\{i \in I: x \notin P_{i}\right\}$. Then $\mathcal{B}:=\left\{I_{x}: x \in A \backslash\{0\}\right\}$ is a filter basis on I. Indeed, it follows from the assumption $\cap_{i \in I} P_{i}=0$ that I_{x} is non-empty for every x in $A \backslash\{0\}$, whereas, for x, y in $A \backslash\{0\}$, we have $0 \neq x \in \cap_{i \in I \backslash I_{x}} P_{i}$ and $0 \neq y \in \cap_{i \in I \backslash I_{y}} P_{i}$, hence, by the primeness of A, there exists $0 \neq z \in \cap_{i \in I \backslash\left(I_{x} \cap I_{y}\right)} P_{i}$, so that $I_{z} \subseteq I_{x} \cap I_{y}$.

PROPOSITION 2.- Let A be a prime non-commutative JB*-algebra, I a non-empty set, and, for each i in I, let φ_{i} be a *-homomorphism from A into a non-commutative $J B^{*}$-algebra A_{i}. Assume that $\cap_{i \in I} \operatorname{Ker}\left(\varphi_{i}\right)=0$. Then there exists an ultrafilter \mathcal{U} on I such that the $*$-homomorphism $\varphi: x \rightarrow\left(\varphi_{i}(x)\right)$ from A to $\left(A_{i}\right)_{\mathcal{U}}$ is injective.

Proof.- For i in I, put $P_{i}:=\operatorname{Ker}\left(\varphi_{i}\right)$, and let \mathcal{B} be the filter basis on I associated to the family $\left\{P_{i}\right\}_{i \in I}$ as in the previous comment. Take an ultrafilter \mathcal{U} on I containing \mathcal{B}. Suppose that the mapping $\varphi: x \rightarrow\left(\varphi_{i}(x)\right)$ from A to $\left(A_{i}\right)_{\mathcal{U}}$ is not injective. Then there exists x in A satisfying $\|x\|=1$ and $\lim _{\mathcal{U}} \varphi_{i}(x)=0$. Therefore $J:=\left\{i \in I: \quad\left\|\varphi_{i}(x)\right\|<\frac{1}{2}\right\}$ is an element of \mathcal{U}. But, from the fact that $\|x\|=1$, the definition of J, and Lemma 1, we obtain $\cap_{i \in J} P_{i} \neq 0$. Then, taking a non-zero element y in $\cap_{i \in J} P_{i}$, we have $J \cap I_{y}=\emptyset$. Since J and I_{y} are elements of \mathcal{U}, this is a contradiction.

Let \mathbb{F} be a field containing more than two elements. Following [11, pp. 49-50], an algebra A over \mathbb{F} is called quadratic (over \mathbb{F}) if it has a unit 1, $A \neq \mathbb{F} \mathbf{1}$, and, for each x in A, there are elements $t(x)$ and $n(x)$ in \mathbb{F} such that $x^{2}-t(x) x+n(x) \mathbf{1}=0$. If A is a quadratic algebra over \mathbb{F}, then, for x in $A \backslash \mathbb{F} \mathbf{1}$, the scalars $t(x)$ and $n(x)$ are uniquely determined, so that, choosing $t(\alpha \mathbf{1}):=2 \alpha$ and $n(\alpha \mathbf{1}):=\alpha^{2}(\alpha \in \mathbb{F})$, we obtain mappings t and n (called the trace form and the algebraic norm, respectively) from A to \mathbb{F}, which are linear and quadratic, respectively (see again [11; pp. 49-50]).

LEMMA 3.- Let A be a quadratic non-commutative $J B^{*}$-algebra. Then we have $|t(x)| \leq 2\|x\|$ and $|n(x)| \leq\|x\|^{2}$ for all x in A. Moreover, if B is a *-invariant subalgebra of A with $\operatorname{dim}(B) \geq 2$, then the unit of A lies in B, and therefore B is a quadratic algebra.

Proof.- For x in A, the spectrum of x relative to the (associative and finitedimensional) subalgebra of A generated by x consists of the roots (say λ_{1}, λ_{2}) of the complex polynomial $\lambda^{2}-t(x) \lambda+n(x)$, so $t(x)=\lambda_{1}+\lambda_{2}$ and $n(x)=\lambda_{1} \lambda_{2}$, and so $|t(x)| \leq 2\|x\|$ and $|n(x)| \leq\|x\|^{2}$. Let B be a non-zero *-invariant subalgebra of A with $\mathbf{1} \notin B$. Put $A_{s a}:=\left\{x \in A: x^{*}=x\right\}$ and $B_{s a}:=B \cap A_{s a}$. Then $A_{s a}$, endowed with the product $(x, y) \rightarrow \frac{1}{2}(x y+y x)$, becomes a quadratic algebra over \mathbb{R}. Since $\mathbf{1} \notin B$, for x in $B_{s a}$ we must have $n(x)=0$, so $x^{2}=t(x) x$, and so

$$
\|x\|^{2}=\left\|x^{2}\right\|=|t(x)|\|x\| .
$$

Now the restriction of t to $B_{s a}$ is a linear functional on B with zero kernel, and hence the real vector space $B_{s a}$ is one-dimensional. Since B is ${ }^{*}$-invariant, we deduce that B is one-dimensional (over \mathbb{C}).

To conclude the proof of our main result, we need some background on factor representations of non-commutative $J B^{*}$-algebras. First of all, we note that, if A is a non-commutative $J B^{*}$-algebra, and if λ is a real number with $0 \leq \lambda \leq 1$, then the involutive Banach space of A, endowed with the product

$$
(x, y) \rightarrow \lambda x y+(1-\lambda) y x
$$

becomes a non-commutative $J B^{*}$-algebra (which will be denoted by $A^{(\lambda)}$). By a non-commutative $J B W^{*}$-algebra we mean a non-commutative $J B^{*}$-algebra which is a dual Banach space. Prime non-commutative $J B W^{*}$-algebras are called non-commutative $J B W^{*}$-factors. A non-commutative $J B W^{*}$-factor is said to be of Type I if the closed unit ball of its predual has extreme points (compare [9; Theorem 1.11]). If A is a non-commutative $J B W^{*}$-factor of Type I , and if A is neither quadratic nor commutative, then there exist a complex Hilbert space H and a real number λ with $\frac{1}{2}<\lambda \leq 1$ such that, denoting by B the C^{*}-algebra of all bounded linear operators on H, we have $A=B^{(\lambda)}[9$; Theorem 2.7]. A factor representation of a non-commutative $J B^{*}$-algebra A is a w^{*}-dense range $*$-homomorphism from A into some non-commutative $J B W^{*}$ factor. Finally, let us recall that every nonzero non-commutative $J B^{*}$-algebra has a faithful family of Type I factor representations [9; Corollary 1.13].

THEOREM 4.- Let A be a prime non-commutative $J B^{*}$-algebra. Then one of the following assertions hold for A :

1. A is commutative.
2. A is quadratic.
3. There exist a prime C^{*}-algebra B and a real number λ with $\frac{1}{2}<\lambda \leq 1$ such that $A=B^{(\lambda)}$.

Proof.- Take a faithful family of Type I factor representations of A (say $\left.\left\{\varphi_{i}: A \rightarrow A_{i}\right\}_{i \in I}\right)$. Define

$$
\begin{gathered}
I_{1}:=\left\{i \in I: A_{i} \text { is commutative }\right\} \\
I_{2}:=\left\{i \in I: A_{i} \text { is quadratic }\right\} \\
I_{3}:=\left\{i \in I: A_{i}=B_{i}^{\left(\lambda_{i}\right)} \text { for some } C^{*}-\operatorname{algebra} B_{i} \text { and some } \frac{1}{2}<\lambda_{i} \leq 1\right\}
\end{gathered}
$$

and, for $n=1,2,3$, write $Q_{n}:=\cap_{i \in I_{n}} \operatorname{Ker}\left(\varphi_{i}\right)$. Since $\cap_{n=1}^{3} Q_{n}=\cap_{i \in I} \operatorname{Ker}\left(\varphi_{i}\right)=$ 0 , the primeness of A gives the existence of $m=1,2,3$ such that $Q_{m}=0$. Therefore, replacing I_{m} with I, there is no loss of generality in supposing that one of the conditions which follow is fulfilled:

1. A_{i} is commutative for all i in I.
2. A_{i} is quadratic for all i in I.
3. For each i in I, there exist a C^{*}-algebra B_{i} and some $\frac{1}{2}<\lambda_{i} \leq 1$ such that $A_{i}=B_{i}^{\left(\lambda_{i}\right)}$.

Assume that Condition 1 is satisfied. Then, clearly, A is commutative.
Now, assume that Condition 2 is fulfilled. Then, by Proposition 2, there exists an ultrafilter \mathcal{U} on I such that the $*$-homomorphism $\varphi: x \rightarrow\left(\varphi_{i}(x)\right)$ from A to $\left(A_{i}\right)_{\mathcal{U}}$ is injective. Note that, since, for i in I, A_{i} has a unit $\mathbf{1}_{i},\left(A_{i}\right)_{\mathcal{U}}$ has also a unit $\mathbf{1}=\left(\mathbf{1}_{i}\right)$. Note also that, since quadratic algebras have dimension ≥ 2, and A has a quadratic factor representation, we have $\operatorname{dim}(A) \geq 2$, so $\operatorname{dim}(\varphi(A)) \geq 2$ (because φ is injective), and so $\left(A_{i}\right)_{\mathcal{U}} \neq \mathbb{C} 1$. For i in I, let t_{i} and n_{i} be the trace form and the algebraic norm, respectively, on the quadratic non-commutative $J B^{*}$-algebra A_{i}. By the first assertion in Lemma 3, for $\left(x_{i}\right)$ in $\left(A_{i}\right) \mathcal{U},\left\{t_{i}\left(x_{i}\right)\right\}_{i \in I}$ and $\left\{n_{i}\left(x_{i}\right)\right\}_{i \in I}$ are bounded families of complex numbers, and therefore $t:\left(x_{i}\right) \rightarrow \lim _{\mathcal{U}} t_{i}\left(x_{i}\right)$ and $n:\left(x_{i}\right) \rightarrow \lim _{\mathcal{U}} t_{i}\left(x_{i}\right)$ become welldefined mappings from $\left(A_{i}\right)_{\mathcal{U}}$ into \mathbb{C} satisfying

$$
\left(x_{i}\right)^{2}-t\left(\left(x_{i}\right)\right)\left(x_{i}\right)+n\left(\left(x_{i}\right)\right) \mathbf{1}=0
$$

for all $\left(x_{i}\right)$ in $\left(A_{i}\right)_{\mathcal{U}}$. Now, $\left(A_{i}\right)_{\mathcal{U}}$ is a quadratic algebra. Since $\varphi(A)$ is a $*-$ invariant subalgebra of $\left(A_{i}\right)_{\mathcal{U}}$ with dimension ≥ 2, it follows from the second assertion in Lemma 3 that $\varphi(A)$ (and hence A) is quadratic.

Finally assume that Condition 3 is satisfied. As in the previous case, we are provided with an ultrafilter \mathcal{U} on I such that the $*$-homomorphism $\varphi: x \rightarrow$ ($\left.\varphi_{i}(x)\right)$ from A to $\left(A_{i}\right)_{\mathcal{U}}$ is injective. Put $\lambda:=\lim _{\mathcal{U}} \lambda_{i}$. Then we easily obtain

$$
\left(A_{i}\right)_{\mathcal{U}}=\left(B_{i}^{\left(\lambda_{i}\right)}\right)_{\mathcal{U}}=\left(B_{i}^{(\lambda)}\right)_{\mathcal{U}}=\left(\left(B_{i}\right)_{\mathcal{U}}\right)^{(\lambda)}
$$

If $\lambda=\frac{1}{2}$, then $\left(A_{i}\right)_{\mathcal{U}}$ (and hence A) is commutative. Otherwise, we are in the situation which follows: $\frac{1}{2}<\lambda \leq 1, D:=\left(B_{i}\right)_{\mathcal{U}}$ is a C^{*}-algebra, and, through the (automatically isometric) injective $*$-homomorphism φ, A can be seen as a closed $*$-invariant subalgebra of $D^{(\lambda)}$. Then, since the product $x \circ y$ of D can be determined from the one $x y$ of $D^{(\lambda)}$ by means of the equality

$$
x \circ y=\frac{1}{2 \lambda-1}(\lambda x y+(\lambda-1) y x),
$$

there exists a closed $*$-invariant subalgebra of $D($ say $B)$ satisfying $A=B^{(\lambda)}$. Now the proof is concluded by showing that the C^{*}-algebra B is prime. Let P and Q be ideals of B with $P \circ Q=0$. Then, clearly, P and Q are ideals of A. On the other hand, since C^{*}-algebras are semiprime, $P \circ Q=0$ implies $Q \circ P=0$, and therefore $P Q \subseteq P \circ Q+Q \circ P=0$. By the primeness of A, we have either $P=0$ or $Q=0$.

Quadratic prime non-commutative $J B^{*}$-algebras have been precisely described in [9, Section 3]. According to that description, they are in fact Type I non-commutative $J B W^{*}$-factors. For commutative prime $J B^{*}$-algebras, the reader is referred to [5; Theorem 2.3].

Recall that a W^{*}-algebra is a C^{*}-algebra which is a dual Banach space, and that a W^{*}-factor is a prime W^{*}-algebra. The next result follows directly from Theorem 4.

COROLLARY 5 ([1], [3]).- Non-commutative JBW*-factors are either commutative, quadratic, or of the form $B^{(\lambda)}$ for some W^{*}-factor B and some real number λ with $\frac{1}{2}<\lambda \leq 1$.

For (commutative) $J B W^{*}$-factors, the reader is referred to [5; Proposition 1.1].

As we have pointed out earlier, for non-commutative $J B W^{*}$-factors of Type I, the W^{*}-factor B arising in the above Corollary is equal to the algebra $B L(H)$ of all bounded linear operators on some complex Hilbert space H. This result follows from Corollary 5 and the fact that the algebras of the form $B L(H)$, with H a complex Hilbert space, are the unique W^{*}-factors of Type I [6; Proposition 7.5.2]. Concerning (commutative) $J B W^{*}$-factors of Type I, we can invoke the categorical correspondence between $J B W$-algebras and $J B W^{*}$-algebras [4], to reformulate the classification of $J B W$-factors of Type I [6; Corollary 5.3.7, and Theorems 5.3.8, 6.1.8, and 7.5.11] in the terms given by the next proposition. We recall that a conjugation (respectively, anticonjugation) σ on a complex Hilbert space H is a conjugate-linear isometry from H to H satisfying $\sigma^{2}=\mathbf{1}$ (respectively, $\sigma^{2}=-1$).

PROPOSITION 6.- The $J B W^{*}$-factors of Type I are the following:

1. The exceptional $J B^{*}$-algebra $H_{3}\left(\mathbb{O}_{\mathbb{C}}\right)$.
2. The prime quadratic $J B^{*}$-algebras.
3. The $J B^{*}$-algebras of the form $B^{(1 / 2)}$, where $B=B L(H)$ for some complex Hilbert space H.
4. The $J B^{*}$-algebras of the form $\left\{x \in B L(H): \sigma^{-1} x^{*} \sigma=x\right\}$, where H is a complex Hilbert space, and σ is either a conjugation or an anticonjugation on H.

A normed algebra A is called topologically simple if $A^{2} \neq 0$ and the unique closed ideals of A are $\{0\}$ and A.

COROLLARY 7.- Topologically simple non-commutative $J B^{*}$-algebras are either commutative, quadratic, or of the form $B^{(\lambda)}$ for some topologically simple C^{*}-algebra B and some real number λ with $\frac{1}{2}<\lambda \leq 1$.

Proof.- Since topologically simple normed algebras are prime, Theorem 4 applies. But, if A is a non-commutative $J B^{*}$-algebra of the form $B^{(\lambda)}$, for some C^{*}-algebra B and some $\frac{1}{2}<\lambda \leq 1$, then every ideal of B is an ideal of A, and hence B is topologically simple whenever A is so.

We note that every quadratic prime $J B^{*}$-algebra is algebraically (hence topologically) simple. For topologically simple (commutative) $J B^{*}$-algebras, the reader is referred to [5; Corollary 3.1].

Acknowledgments.- Part of this work was done while the third author was visiting the University of Almería. He is grateful to the Department of Algebra and Mathematical Analysis of that University for its hospitality and support.

References

[1] K. ALVERMANN and G. JANSSEN, Real and complex non-commutative Jordan Banach algebras. Math. Z. 185 (1984), 105-113.
[2] F. F. BONSALL and J. DUNCAN, Complete normed algebras. SpringerVerlag, Berlin, 1973.
[3] R. B. BRAUN, Structure and representations of non-commutative C^{*} Jordan algebras. Manuscripta Math. 41 (1983), 139-171.
[4] C. M. EDWARDS, On Jordan W^{*}-algebras. Bull. Sci. Math. 104 (1980), 393-403.
[5] A. FERNANDEZ, E. GARCIA, and A. RODRIGUEZ, A Zel'manov prime theorem for $J B^{*}$-algebras. J. London Math. Soc. 46 (1992), 319-335.
[6] H. HANCHE-OLSEN and E. STORMER, Jordan operator algebras. Monograph Stud. Math. 21, Pitman, Boston-London-Melbourne, 1984.
[7] S. HEINRICH, Ultraproducts in Banach space theory. J. Reine Angew. Math. 313 (1980), 72-104.
[8] R. PAYA, J. PEREZ, and A. RODRIGUEZ, Non-commutative Jordan C^{*}-algebras. Manuscripta Math. 37 (1982), 87-120.
[9] R. PAYA, J. PEREZ, and A. RODRIGUEZ, Type I factor representations of non-commutative $J B^{*}$-algebras. Proc. London Math. Soc. 48 (1984), 428444.
[10] A. RODRIGUEZ, Non-associative normed algebras spanned by hermitian elements. Proc. London Math. Soc. 47 (1983), 258-274.
[11] R. D. SCHAFER, An introduction to nonassociative algebras. Academic Press, New York, 1966.
[12] V. G. SKOSYRSKII, Strongly prime noncommutative Jordan algebras (in Russian). Trudy Inst. Mat. (Novosibirk) 16 (1989), 131-164, 198-199, Math. Rev. 91b:17001.

